
Leveraging Interactive Distance Fields for Safe and
Smooth Reactive Planning

Usama Ali, Adrian Müller, Tobias Kaupp
Technical University of Applied Sciences

Würzburg-Schweinfurt (THWS)
Schweinfurt, Germany

Fouad Sukkar, Lan Wu, Teresa Vidal-Calleja
University of Technology Sydney (UTS)

Sydney, Australia

Abstract—Human-robot collaboration applications require safe
and reactive planning. Euclidean distance fields (EDF) are a
promising representation of such dynamic scenes due to their
ability to reason about free space and the readily available
distance to collision costs. A key challenge for the commonly
used discrete EDF representations, however, is the need for
differentiable distance fields to produce smooth collision costs
and efficient updates of the dynamic objects. In this paper, we
propose to use a Gaussian Process (GP) distance field-based
framework that enables both, differentiable distance fields and
fast dynamic scene updates. This framework allows implicit
semantic reasoning of static and dynamic regions of the scene.
Moreover, we propose to use this framework in combination
with the Riemannian Motion Policies (RMP) as a local reactive
planner to enable safe human-robot interactions. We design a
collision avoidance policy that models the repulsive motion using
the distance and gradient fields from our GP. We show the
performance of our reactive planner in an experiment with a
UR5e interacting safely and smoothly with a human. A detailed
demonstration of the framework and the experimental setup is
available at https://usaali.github.io/IDMP-RMP/.

I. INTRODUCTION

In order for robots to collaborate in close proximity to
humans, we require them to be reactive and safe. An efficient
representation of the environment that facilitates this behaviour
is crucial to enabling such applications. For example, a robot
manipulator carrying out a task in a shared workspace must
react to changes in the environment and do so in a timely,
robust and natural manner.

Euclidean distance fields (EDF) are a promising represen-
tation for such tasks as they provide smooth collision costs
and reason about free space which is important for safety
critical applications. Recently, progress has been made towards
increasing the computational efficiency of computing discrete
EDFs for fast motion planning [7, 4]. However, responding
to changes in the environment dynamically has remained a
challenge for EDF methods. Moreover, the discrete nature
of these EDF representations poses a challenge for smooth
distance gradient estimation, required for smooth collision
avoidance.

In this work we leverage the Interactive Distance Field
Mapping and Planning (IDMP) framework [1] which utilizes
Gaussian Processes (GP) to represent a continuous distance
and gradient field. Key to our approach, IDMP utilises a
local Gaussian Process Distance Field (GPDF) named Frustum

Fig. 1. Dynamic obstacle avoidance using our combined RMP and interactive
GPDF framework. (inset) Robot with collision spheres and trajectory traced
out in green. The sensor pointcloud is depicted as spheres, which are colored
depending on their height. A slice of the distance field is visualized as colored
boxes with an color spectrum from red, meaning small distances, to purple,
meaning large distances.

Field which constantly takes in new observations from a depth
sensor and fuses this information with a global GPDF quickly
and robustly. This is achieved by determining implicit semantic
information about moving objects via a simple classification
process that utilises readily available distance to surface infor-
mation from both the local and global representation. This is
crucial to ensure that the GPDF is kept updated in scenes with
dynamic objects like human-robot collaboration scenarios.
Otherwise a planner will act on outdated information, which
might lead to collisions.

For avoiding collisions with moving objects we use a local
reactive motion generator called Riemannian motion polices
(RMP). RMPs remain to be demonstrated in combination
with EDFs in online and dynamic settings [8] and have
mainly been used in conjunction with voxel-based occupancy
representations [9, 11].

In this paper we formulate motion policies that utilise our
interactive GPDF’s distance and gradient information. Our
dual-GPDF approach in combination with RMPs allows for
fast and direct semantic reasoning about moving and static
regions in the scene which facilitates reactive and robust
downstream control.

We demonstrate the use of RMPs in combination with
GPDFs in a human robot collaboration setting where a UR5

https://usaali.github.io/IDMP-RMP/


robot arm must carry out a task in a shared workspace. We
show that our method achieves smoother and more natural
reactive behaviour compared to an occupancy-based baseline
method.

II. PRELIMINARIES

A. Interactive Distance Field Mapping

For mapping dynamic scenes we utilise the IDMP frame-
work [1] which implicitly models a continuous Euclidean
distance field via a reverting GP function [6]. Let S be a
surface in a Euclidean space Rn which is observed with Q
noisy measurements y = {yi}Qi=1 at positions X = {xi}Qi=1.
We can now regress the occupancy o(x) : Rn 7→ R by
modeling it as a GP

o(x) ∼ GP(0, k(x,x′)), (1)

with k(x,x′) being the covariance kernel function of the
distribution, which is chosen as

k(x,x′) = σ2 exp

(
−∥x− x′∥2

2l2

)
. (2)

We define the value of our measurement on the surface to
satisfy

y(x) = 1 ∀x ∈ S, (3)

with this the occupancy at any point x∗ can be recovered by

o(x∗) = k(x∗, X)
(
K(X,X) + σ2

yI
)−1

1 , (4)

where k(x∗, X) = [k(x∗,x1), ..., k(x∗,xQ)] represents the
covariance vector between the input points and the query point
and K(X,X) =

[
k(x1, X)⊤, ...,k(xQ, X)⊤

]
the covariance

matrix between the input points.
To derive the distance d(x∗) from the occupancy o(x∗), the

kernel function has to be reverted, resulting in

d(x∗) =

√
−2l2 ∗ log

(
o(x∗)

σ2

)
. (5)

Särkkä [12] shows that a GP linearly operated remains a GP
and the operation can be directly applied to the kernel itself.
Using this fact, we can compute the gradient field ∇d(x∗) by
differentiating Eq. 5 with respect to the distance. Since the
direction of the distance field gradient ∇d(x∗) aligns with the
direction of the GP gradient ∇o(x∗), we can simplify as,

∇d(x∗) = ∇k(x∗, X)
(
K(X,X) + σ2

yI
)−1

1 . (6)

The key aspect of the IDMP framework (see Figure 3) is
that it uses a Frustrum Field to fuse and identify the dynamic
regions locally before passing the information to the Fused
Field that contains the global information. Figure 2 shows the
internal update process of IDMP. The background displays the
distance field within the sensor’s field of view generated by the
frustum GPDF. While the fused GPDF is trained on all points
from the internal global map, the frustum GPDF only utilizes
the latest observations, capturing changes in the scene. By

(a) Observation of unknown scene (b) Update of a moving object

Fig. 2. The Frustum Field is used to extract semantics from the new
observation. (a) A completely new observation is added to the Fused Field.
(b) For every following observation, the Frustum Field is queried with the
points from the Fused Field and semantics are determined according to the
resulting distances.

querying the frustum GPDF with the fused GPDF’s training
points, we can directly retrieve implicit semantics based on
distance metrics.

Training points in the fused GPDF are classified as static if
their queried distance in the frustum GPDF is below a certain
threshold, indicating the object has not moved. Training points
are classified as dynamic when this distance exceeds the sensor
noise threshold, indicating that the object has moved. For the
final case we query newly observed sensor points with the
fused GPDF. Those points with distances greater than a certain
threshold are classified as new and are fused into the global
GPDF.

B. Riemannian Motion Policies

Riemannian Motion Policies (RMP) [10] is a local reactive
motion generator that combines multiple simple task-based
policies to achieve potentially complex high-level behaviours
that would otherwise be difficult to design directly in the
configuration space of the robot. Policies are formulated
as second-order dynamical systems and weighted by their
corresponding Riemannian metric resulting in smooth and
expressive paths.

A policy P is modeled on a Riemann Manifold M and is
defined by the tuple (f,A)

M, where f outputs an acceleration
based on the states x and ẋ:

ẍd = f(x, ẋ) with x ∈ M. (7)

A(x, ẋ) is a Riemann Metric for M that also varies with the
state.

Multiple policies can be optimally combined with the
weighted sum

Pc = (fc,Ac)
C =

(∑
i

Ai

)+∑
i

Aifi,
∑
i

Ai

 . (8)

To transform policies between the task and configuration-
space manifolds, push- and pullback operations are performed,
see Ratliff et al. [10] for more details.



Fig. 3. System diagram of our proposed Framework. IDMP processes the sensor data and fuses this into a global GPDF which is then queried by our RMP
policy.

III. REACTIVE PLANNING IN INTERACTIVE DISTANCE
FIELDS

We propose to use the output of the fused GPDF as
described in Section II-A in combination with our custom-
designed collision avoidance policy for RMP (Section II-B)
to safely navigate in dynamic scenes.

Figure 3 shows the proposed system architecture, where
IDMP takes as input the depth sensor’s data and pose. These
inputs are used to generate the local Frustum Field which
determines the implicit semantics of the scene and is then
used to fuse the new observation with the global GPDF. Our
RMP policy queries distance and gradient information from
the fused global GPDF to generate accelerations which are
passed to a controller for execution on the robot.

For querying distances from the robot to obstacles we use
a common link-sphere approximation method [2] (see Fig. 4).
We can then query distances for each sphere centre xc using

Fig. 4. Visualisation of our link-sphere approximation.

Eq. 5 as follows:

d(xc) =

√√√√−2l2 ∗ log

(
k(xc, X)

(
K(X,X) + σ2

yI
)−1

σ2

)
. (9)

The gradient ∇d(xc) can then be calculated analytically via
Eq. 6.

Fig. 5. Plot of the policy acceleration and metric values.

We adapt the collision avoidance policy proposed by Ratliff
et al. [10] consisting of a repulsion and a damping component

ẍ = ẍrep + ẍdamp. (10)

We model the repulsive motion as a function of the gradient
∇d and distance d from the GPDF,

ẍrep = ηrep∇d(x) exp

(
−d(x)

νrep

)
, (11)

with the repulsion gain ηrep and the length scale νrep. The
damping term reduces oscillations and is a function of the
velocity ẋ and distance d described by,

ẍdamp = −ηdamp

(
1− S

(
ẋ

νdamp

))
∗ νrepẋ

d(x)
, (12)

where S(x) =
1

1 + e−x
, ηdamp is the damping gain and νdamp

the damping length scale.
The task-space metric weights the importance of each policy

in the resulting acceleration. Thus, we propose a diagonal
matrix with values from a smooth activation gate which
depends on the distance d and the activation parameter da
as

A = I ∗


d2

d2a
− 2 ∗ d

da
+ 1 for d < da

0 for d > da

(13)

The effect of our collision avoidance policy on the output
acceleration and task-space metric as a function of distance
is shown in Fig. 5 with varying parameter values.



Fig. 6. Comparison of trajectories for the baseline (left) and our proposed
method (right). The robot is tasked to move between two waypoints, as the
human moves their arm in the way.

Fig. 7. Comparison of IDMP-RMP and Baseline trajectory.

Additionally to our collision policy we use a target attractor
policy, a joint limit policy and a velocity limit policy as
described in [10, 3].

IV. EXPERIMENTS

We evaluate our method in a mock human-robot interaction
scene where the robot is tasked to cycle between two way-
points. During the execution, a human enters the workspace
and places their arm in the way of the robot.

We compare the behaviour of our framework against an
occupancy-based reactive method implemented in ROS pack-
age MoveIt. This baseline method builds an Octomap [5]
which is continuously updated with the sensor input. A tra-
jectory is then planned using the Bi-directional Fast Marching
Tree (BFMT*) algorithm [13]. During execution the trajectory
is checked for possible collisions which then triggers replan-
ning.

Figure 6 shows the resulting trajectories for both our method
and the baseline. Compared to the baseline Sour method is able
to handle dynamic obstacles reactively whereas the baseline
method awkwardly stops as it replans.

To characterise the behaviour of our system we show
trajectory plots in Fig. 7 and compute smoothness metrics in
Table I. Acceleration and jerk are computed numerically as
the second and third time derivatives of position. Change in

curvature is computed as

∆κ =
1

n

n−1∑
i=1

∥κi+1 − κi∥, (14)

with the curvature defined as

κ(t) =
∥ẋ× ẍ∥
∥ẋ∥3

. (15)

As can be seen the trajectories produced by our method
result in much smoother trajectories. Notably the mean squared
jerk and change in curvature were approximately 2x and 3x
lower, respectively, than the baseline.

TABLE I
COMPARISON OF SMOOTHNESS METRICS BETWEEN IDMP-RMP AND

BASELINE TRAJECTORIES.

Metric IDMP-RMP Baseline Difference
Variance of Acceleration (X) 2.30e-05 3.08e-05 -25.32%
Variance of Acceleration (Y) 3.07e-05 5.47e-05 -43.88%
Variance of Acceleration (Z) 1.03e-05 4.13e-05 -75.06%
Total Jerk 0.602 0.832 -27.64%
Mean Squared Jerk 2.63e-05 5.28e-05 -50.19%
Mean Curvature Change 0.302 0.925 -67.35%

V. CONCLUSION

In this paper we presented a framework that utilises interac-
tive distance fields based on GPs in combination with RMPs
to reactively plan in dynamic scenes. We demonstrated this
in a human-robot collaboration scenario where a robot arm
smoothly avoids colliding with a person entering its workspace
while continuing to carry out its task.

While our work utilises implicit semantic information based
on moving regions of the scene, future work aims to use
more fine grained information such as distinguishing between
human and non-human moving objects. Exploring how this
can be incorporated into our RMP formulation to achieve more
natural and nuanced avoidance behaviour in more complex
collaborative settings is a promising avenue.
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